Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8357, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102128

ABSTRACT

Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed 'subgenome dominance' remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.


Subject(s)
Carps , Evolution, Molecular , Animals , Polyploidy , Genome/genetics , Epigenesis, Genetic , Genome, Plant
2.
Mol Ecol Resour ; 20(4): 882-891, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32216061

ABSTRACT

Ancherythroculter nigrocauda is a cyprinid fish endemic of the upper reaches of the Yangtze River in China, where it is an important aquaculture and commercial species. It is also a threatened species as a result of overfishing, dam construction and water pollution. In this study, a chromosome-level genome assembly of A. nigrocauda is reported and built using PacBio sequencing and the Hi-C technology. The 1.04-Gb sequenced genome of A. nigrocauda contained 2,403 contigs, with an N50 length of 3.12 Mb. Then, 1,297 contigs, which represented 54.0% of all contigs and 97.2% of the whole content of the genome nucleotide base, were assembled into 24 chromosomes. Combined with transcriptome data from 10 tissues, 27,042 (78.5%) genes were functionally annotated out of 34,414 predicted protein-coding genes. Interestingly, high expression of many positively selected genes and expanded gene families in the brain suggested that these genes might play important roles in brain development in A. nigrocauda. Finally, we found tissue-specific expression of 10,732 genes. Functional analyses showed that they were mainly composed of genes related to (a) environmental information processing, (b) the circulatory system, and (c) development, suggesting they might be important for adaptation to different environments and for development of A. nigrocauda. The high-quality genome obtained in this study not only provides a valuable genomic resource for future studies of A. nigrocauda populations and conservation, but is also an important resource for further functional genomics studies of fishes.


Subject(s)
Cyprinidae/genetics , Genome/genetics , Transcriptome/genetics , Animals , Brain/growth & development , China , Chromosomes/genetics , Conservation of Natural Resources/methods , Genomics/methods , Molecular Sequence Annotation/methods , Phylogeny , Sequence Analysis, DNA/methods
3.
Nat Commun ; 11(1): 1362, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170101

ABSTRACT

Horizontal transfer of transposable elements (HTT) is an important process shaping eukaryote genomes, yet very few studies have quantified this phenomenon on a large scale or have evaluated the selective constraints acting on transposable elements (TEs) during vertical and horizontal transmission. Here we screen 307 vertebrate genomes and infer a minimum of 975 independent HTT events between lineages that diverged more than 120 million years ago. HTT distribution greatly differs from null expectations, with 93.7% of these transfers involving ray-finned fishes and less than 3% involving mammals and birds. HTT incurs purifying selection (conserved protein evolution) on all TEs, confirming that producing functional transposition proteins is required for a TE to invade new genomes. In the absence of HTT, DNA transposons appear to evolve neutrally within genomes, unlike most retrotransposons, which evolve under purifying selection. This selection regime indicates that proteins of most retrotransposon families tend to process their own encoding RNA (cis-preference), which helps retrotransposons to persist within host lineages over long time periods.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Gene Transfer, Horizontal , Vertebrates/genetics , Animals , Computational Biology , Eukaryota/genetics , Genome , Mammals/genetics , Mutation Rate , Retroelements
4.
Genome Biol Evol ; 11(9): 2505-2516, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31384954

ABSTRACT

Although DNA transposons often generated internal deleted derivatives such as miniature inverted-repeat transposable elements, short internally deleted elements (SIDEs) derived from nonlong terminal-repeat retrotransposons are rare. Here, we found a novel SIDE, named Persaeus, that originated from the chicken repeat 1 (CR1) retrotransposon Zenon and it has been found widespread in Lepidoptera insects. Our findings suggested that Persaeus and the partner Zenon have experienced a transposition burst in their host genomes and the copy number of Persaeus and Zenon in assayed genomes are significantly correlated. Accordingly, the activity though age analysis indicated that the replication wave of Persaeus coincided with that of Zenon. Phylogenetic analyses suggested that Persaeus may have evolved at least four times independently, and that it has been vertically transferred into its host genomes. Together, our results provide new insights into the evolution dynamics of SIDEs and its partner non-LTRs.


Subject(s)
Lepidoptera/genetics , Retroelements , Animals , Lepidoptera/classification , Phylogeny
5.
Genes Genomics ; 40(10): 1041-1051, 2018 10.
Article in English | MEDLINE | ID: mdl-29961170

ABSTRACT

Although there are some documented examples on population dynamics of transposable elements (TEs) in model organisms, the evolutionary dynamics of TEs in domesticated species has not been systematically investigated. The objective of this study is to understand population dynamics of TEs during silkworm domestication. In this work, using transposon-display we examined the polymorphism of seven TE families [they represent about 59% of silkworm (Bombyx mori) total TE content] in four domesticated silkworm populations and one wild silkworm population. Maximum likelihood (ML) was used to estimate selection pressure. Population differentiation and structure were performed by using AMOVA analysis and program DISTRUCT, respectively. The results of transposon-display showed that significant differentiation occurred between the domesticated silkworm and wild silkworm. These TEs have experienced expansions and fixation in the domesticated silkworm but not in wild silkworm. Furthermore, the ML results indicated that purifying selection of TEs in the domesticated silkworm were significantly weaker than that in the wild silkworm. Interestingly, an adaptation insertion induced by BmMITE-2 was found, and this insertion can reduce the polymorphism of the flanking regions of its neighboring COQ7 gene. Our results suggested that TEs expanded and were fixed in the domesticated silkworm might result from demographic effects and artificial selection during domestication. We concluded that the data presented in this study have general implication in animal and crop improvements as well as in domestication of new species.


Subject(s)
Bombyx/genetics , DNA Transposable Elements , Animals , Domestication , Evolution, Molecular , Genome, Insect , Insect Proteins/genetics , Phylogeny , Polymorphism, Genetic , Selection, Genetic , Ubiquinone/genetics
6.
Mob DNA ; 9: 19, 2018.
Article in English | MEDLINE | ID: mdl-29946369

ABSTRACT

BACKGROUND: Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life. RESULTS: Herein, we performed the first comprehensive analysis of miniature inverted-repeat transposable elements (MITEs) in the 5170 viral genomes for which sequences are currently available. Four hundred and fifty one copies of ten miniature inverted-repeat transposable elements (MITEs) were found and each MITE had reached relatively large copy numbers (some up to 90) in viruses. Eight MITEs belonging to two DNA superfamilies (hobo/Activator/Tam3 and Chapaev-Mirage-CACTA) were for the first time identified in viruses, further expanding the organismal range of these two superfamilies. TEs may play important roles in shaping the evolution of pandoravirus genomes, which were here found to be very rich in MITEs. We also show that putative autonomous partners of seven MITEs are present in the genomes of viral hosts, suggesting that viruses may borrow the transpositional machinery of their cellular hosts' autonomous elements to spread MITEs and colonize their own genomes. The presence of seven similar MITEs in viral hosts, suggesting horizontal transfers (HTs) as the major mechanism for MITEs propagation. CONCLUSIONS: Our discovery highlights that TEs contribute to shape genome evolution of pandoraviruses. We concluded that as for cellular organisms, TEs are part of the pandoraviruses' diverse mobilome.

7.
Genes Genomics ; 40(5): 485-495, 2018 05.
Article in English | MEDLINE | ID: mdl-29892960

ABSTRACT

TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.


Subject(s)
Bombyx/genetics , DNA-Binding Proteins/genetics , Transposases/genetics , Animals , DNA Transposable Elements/genetics , Genome, Insect/genetics , Genome-Wide Association Study/methods , Phylogeny
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 312-20, 2017 Jan.
Article in English | MEDLINE | ID: mdl-30221909

ABSTRACT

Oxidation of low density lipoprotein (LDL) has been considered as the critical factor which led to atherosclerosis (AS). Lipid and protein in LDL were oxidized to cause change of spectra during oxidation. Clove has been demonstrated to possess the strongest antioxidant capacity among 87 both medical and edible plants proclaimed by China. However, whether LDL oxidation is inhibited by clove? If so, whether it inhibits the oxidation of lipid and protein in LDL, and how does spectral characteristic of LDL change during oxidation when clove was added into LDL. Currently, these questions are still unclear. Therefore, the inhibition efficiency of the effective fraction from clove (EFC) on oxidation of LDL was studied by UV-Visible spectra and fluorescence spectra. The results indicated that EFC might effectively delay propagation of conjugated diene (CD) during LDL oxidation and postpone reaching maximum of its content. Likewise, it might inhibit cholesterol degradation, tryptophan (Trp) fluorescence quenching, lysine (Lys) residues from being modified, and lipofuscins from being generated in peroxidatic reaction among lipid and protein. Besides, EFC also might affect variation of UV-Visible spectra of LDL during oxidation. This study provides reference for future research and development of clove functional food inhibiting AS.


Subject(s)
Antioxidants/pharmacology , Lipoproteins, LDL/metabolism , Syzygium/chemistry , Lipids , Oxidation-Reduction
9.
Mol Genet Genomics ; 292(1): 243-250, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27853884

ABSTRACT

Helentrons represent a novel subtype of Helitrons. However, the evolutionary history of Helentrons in organisms is not clearly understood. In this study, we performed structure and autonomous partner analyses, which revealed that bm_455, a TE obtained from the Bombyx mori TE database, BmTEdb, was a member of Helentrons but not a long-terminal repeat (LTR) retrotransposon. Further analyses showed that bm_455 was also present in a wide range of insects including lepidopterans, coleopterans and hymenopterans using a homology-based search strategy. Several lines of evidence (high sequence identity, discontinuous distribution and lack of intense purifying selection) suggested that these elements could have been transferred into these species in part by horizontal transfers (HTs). Because Helentrons can capture host gene fragments, HTs of Helentrons might have a huge impact on their host genome evolution.


Subject(s)
Bombyx/genetics , DNA Transposable Elements , Gene Transfer, Horizontal , Animals , Genome , Insecta/genetics , Phylogeny
10.
Article in English | MEDLINE | ID: mdl-28025339

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) have attracted much attention due to their widespread occurrence and high copy numbers in eukaryotic genomes. However, the systematic knowledge about MITEs in insects and other animals is still lacking. In this study, we identified 6012 MITE families from 98 insect species genomes. Comparison of these MITEs with known MITEs in the NCBI non-redundant database and Repbase showed that 5701(∼95%) of 6012 MITE families are novel. The abundance of MITEs varies drastically among different insect species, and significantly correlates with genome size. In general, larger genomes contain more MITEs than small genomes. Furthermore, all identified MITEs were included in a newly constructed database (iMITEdb) (http://gene.cqu.edu.cn/iMITEdb/), which has functions such as browse, search, BLAST and download. Overall, our results not only provide insight on insect MITEs but will also improve assembly and annotation of insect genomes. More importantly, the results presented in this study will promote studies of MITEs function, evolution and application in insects. DATABASE URL: http://gene.cqu.edu.cn/iMITEdb/.


Subject(s)
DNA Transposable Elements , Databases, Nucleic Acid , Evolution, Molecular , Genome, Insect , Insecta/genetics , Inverted Repeat Sequences , Animals , Genome-Wide Association Study
11.
Genome Biol Evol ; 8(9): 2994-3005, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27667131

ABSTRACT

We report a Danio rerio transposon named DrTRT, for D. rerio Transposon Related to Tc1 The complete sequence of the DrTRT transposon is 1,563 base pairs (bp) in length, and its transposase putatively encodes a 338-amino acid protein that harbors a DD37E motif in its catalytic domain. We present evidence based on searches of publicly available genomes that TRT elements commonly occur in vertebrates and protozoa. Phylogenetic and functional domain comparisons confirm that TRT constitutes a new subfamily within the Tc1 family. Hallmark features of having no premature termination codons within the transposase, the presence of all expected functional domains, and its occurrence in the bony fish transcriptome suggest that TRT might have current or recent activity in these species. Further analysis showed that the activity of TRT elements in these species might have arisen about between 4 and 19 Ma. Interestingly, our results also implied that the widespread distribution of TRT among fishes, frog, and snakes is the result of multiple independent HT events, probably from bony fishes to snakes or frog. Finally, the mechanisms underlying horizontal transfer of TRT elements are discussed.


Subject(s)
DNA Transposable Elements , DNA-Binding Proteins/genetics , Gene Transfer, Horizontal , Protozoan Proteins/genetics , Transposases/genetics , Zebrafish Proteins/genetics , Amino Acid Motifs , Animals , Catalytic Domain , Codon, Terminator , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Transposases/chemistry , Transposases/metabolism , Zebrafish/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
12.
Mob DNA ; 6: 12, 2015.
Article in English | MEDLINE | ID: mdl-26120370

ABSTRACT

BACKGROUND: PHIS transposon superfamily belongs to DNA transposons and includes PIF/Harbinger, ISL2EU, and Spy transposon groups. These three groups have similar DDE domain-containing transposases; however, their coding capacity, species distribution, and target site duplications (TSDs) are significantly different. RESULTS: In this study, we systematically identified and analyzed PHIS transposons in 836 sequenced eukaryotic genomes using transposase homology search and structure approach. In total, 380 PHIS families were identified in 112 genomes and 168 of 380 families were firstly reported in this study. Besides previous identified PIF/Harbinger, ISL2EU, and Spy groups, three new types (called Pangu, NuwaI, and NuwaII) of PHIS superfamily were identified; each has its own distinctive characteristics, especially in TSDs. Pangu and NuwaII transposons are characterized by 5'-ANT-3' and 5'-C|TNA|G-3' TSDs, respectively. Both transposons are widely distributed in plants, fungi, and animals; the NuwaI transposons are characterized by 5'-CWG-3' TSDs and mainly distributed in animals. CONCLUSIONS: Here, in total, 380 PHIS families were identified in eukaryotes. Among these 380 families, 168 were firstly reported in this study. Furthermore, three new types of PHIS superfamily were identified. Our results not only enrich the transposon diversity but also have extensive significance for improving genome sequence assembly and annotation of higher organisms.

13.
Mob DNA ; 6(1): 3, 2015.
Article in English | MEDLINE | ID: mdl-25606061

ABSTRACT

BACKGROUND: Horizontal transfer (HT) of transposable elements (TEs) into a new genome is considered as an important force to drive genome variation and biological innovation. However, most of the HT of DNA transposons previously described occurred between closely related species or insects. RESULTS: In this study, we carried out a detailed analysis of four DNA transposons, which were found in the first sequenced twisted-wing parasite, Mengenilla moldrzyki. Through the homology-based strategy, these transposons were also identified in other insects, freshwater planarian, hydrozoans, and bats. The phylogenetic distribution of these transposons was discontinuous, and they showed extremely high sequence identities (>87%) over their entire length in spite of their hosts diverging more than 300 million years ago (Mya). Additionally, phylogenies and comparisons of transposons versus orthologous gene identities demonstrated that these transposons have transferred into their hosts by independent HTs. CONCLUSIONS: Here, we provided the first documented example of HT of CACTA transposons, which have been so far extensively studied in plants. Our results demonstrated that bats had continuously acquired new DNA elements via HT. This implies that predation on a large quantity of insects might increase bat exposure to HT. In addition, parasite-host interaction might facilitate exchanging of their genetic materials.

14.
Genome Biol Evol ; 6(7): 1748-57, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24966181

ABSTRACT

Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion. Here, we report a new group of evolutionarily related DNA transposons called Spy, which also include TIRs and DDE motif-containing transposase but surprisingly do not create TSDs upon insertion. Instead, Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host nucleotides, without duplication or modification of the AAATTT target sites. Spy transposons were identified in the genomes of diverse invertebrate species based on transposase homology searches and structure-based approaches. Phylogenetic analyses indicate that Spy transposases are distantly related to IS5, ISL2EU, and PIF/Harbinger transposases. However, Spy transposons are distinct from these and other DNA transposon superfamilies by their lack of TSD and their target site preference. Our findings expand the known diversity of DNA transposons and reveal a new group of eukaryotic DDE transposases with unusual catalytic properties.


Subject(s)
DNA Transposable Elements/genetics , Eukaryota/genetics , Animals , Base Sequence , Bombyx , Gene Duplication , Molecular Sequence Data , Phylogeny , Sequence Alignment
15.
Genome Biol Evol ; 6(6): 1375-86, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24868016

ABSTRACT

Horizontal transfer (HT) of a transposable element (TE) into a new genome is regarded as an important force to drive genome variation and biological innovation. In addition, HT also plays an important role in the persistence of TEs in eukaryotic genomes. Here, we provide the first documented example for the repeated HT of three families of Chapaev transposons in a wide range of animal species, including mammals, reptiles, jawed fishes, lampreys, insects, and in an insect bracovirus. Multiple alignments of the Chapaev transposons identified in these species revealed extremely high levels of nucleotide sequence identity (79-99%), which are inconsistent with vertical evolution given the deep divergence time separating these host species. Rather, the discontinuous distribution amongst species and lack of purifying selection acting on these transposons strongly suggest that they were independently and horizontally transferred into these species lineages. The detection of Chapaev transposons in an insect bracovirus indicated that these viruses might act as a possible vector for the horizontal spread of Chapaev transposons. One of the Chapaev families was also shared by lampreys and some of their common hosts (such as sturgeon and paddlefish), which suggested that parasite-host interaction might facilitate HTs.


Subject(s)
DNA Transposable Elements , Gene Transfer, Horizontal , Amino Acid Sequence , Animals , Gene Dosage , Molecular Sequence Data , Phylogeny , Sequence Alignment
16.
Genome Biol Evol ; 5(11): 2020-31, 2013.
Article in English | MEDLINE | ID: mdl-24115603

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) are a specific group of nonautonomous DNA transposons, and they are distributed in a wide range of hosts. However, the origin and evolutionary history of MITEs in eukaryotic genomes remain unclear. In this study, six MITEs were identified in the silkworm (Bombyx mori). Five elements are grouped into four known superfamilies of DNA transposons, and one represents a novel class of MITEs. Unexpectedly, six similar MITEs are also present in the triatomine bug (Rhodnius prolixus) that diverged from the common ancestor with the silkworm about 370 Ma. However, they show different lengths in two species, suggesting that they are different derivatives of progenitor transposons. Three direct progenitor transposons (Sola1, hobo/Ac/Tam [hAT], and Ginger2) are also identified in some other organisms, and several lines of evidence suggested that these autonomous elements might have been independently and horizontally transferred into their hosts. Furthermore, it is speculated that the twisted-wing parasites may be the candidate vectors for these horizontal transfers. The data presented in this study provide some new insights into the origin and evolutionary history of MITEs in the silkworm and triatomine bug.


Subject(s)
Bombyx/genetics , DNA Transposable Elements , Evolution, Molecular , Inverted Repeat Sequences , Rhodnius/genetics , Animals , Base Sequence , Gene Transfer, Horizontal , Molecular Sequence Data
17.
Database (Oxford) ; 2013: bat055, 2013.
Article in English | MEDLINE | ID: mdl-23886610

ABSTRACT

The silkworm, Bombyx mori, is one of the major insect model organisms, and its draft and fine genome sequences became available in 2004 and 2008, respectively. Transposable elements (TEs) constitute ~40% of the silkworm genome. To better understand the roles of TEs in organization, structure and evolution of the silkworm genome, we used a combination of de novo, structure-based and homology-based approaches for identification of the silkworm TEs and identified 1308 silkworm TE families. These TE families and their classification information were organized into a comprehensive and easy-to-use web-based database, BmTEdb. Users are entitled to browse, search and download the sequences in the database. Sequence analyses such as BLAST, HMMER and EMBOSS GetORF were also provided in BmTEdb. This database will facilitate studies for the silkworm genomics, the TE functions in the silkworm and the comparative analysis of the insect TEs. Database URL: http://gene.cqu.edu.cn/BmTEdb/.


Subject(s)
Bombyx/genetics , DNA Transposable Elements/genetics , Databases, Nucleic Acid , Genome, Insect/genetics , Animals , Internet , Molecular Sequence Annotation , User-Computer Interface
18.
DNA Res ; 20(5): 471-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23771679

ABSTRACT

In this study, we developed a structure-based approach to identify Helitrons in four lepidopterans and systematically analysed Helitrons in the silkworm genome. We found that the content of Helitrons varied greatly among genomes. The silkworm genome harboured 67,555 Helitron-related sequences that could be classified into 21 families and accounted for ≈ 4.23% of the genome. Thirteen of the families were new. Three families were putatively autonomous and included the replication initiator motif and helicase domain. The silkworm Helitrons were widely and randomly distributed in the genome. Most Helitron families radiated within the past 2 million years and experienced a single burst of expansion. These Helitron families captured 3724 gene fragments and contributed to at least 1.4% of the silkworm full-length cDNAs, suggesting important roles of Helitrons in the evolution of the silkworm genes. In addition, we found that some new Helitrons were generated by combinations of other Helitrons. Overall, the results presented in this study provided insights into the generation and evolution of Helitron transposons and their contribution to transcripts.


Subject(s)
Bombyx/genetics , Evolution, Molecular , RNA, Messenger/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA Primers , DNA Transposable Elements , DNA, Complementary/genetics , Genes, Insect , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Homology, Amino Acid
19.
Yi Chuan ; 34(8): 1009-19, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-22917906

ABSTRACT

Repetitive sequences (repeats) represent a significant fraction of the eukaryotic genomes and can be divided into tandem repeats, segmental duplications, and interspersed repeats on the basis of their sequence characteristics and how they are formed. Most interspersed repeats are derived from transposable elements (TEs). Eukaryotic TEs have been subdivided into two major classes according to the intermediate they use to move. The transposition and amplification of TEs have a great impact on the evolution of genes and the stability of genomes. However, identification and classification of TEs are complex and difficult due to the fact that their structure and classification are complex and diverse compared with those of other types of repeats. Here, we briefly introduced the function and classification of TEs, and summarized three different steps for identification, classification and annotation of TEs in eukaryotic genomes: (1) assembly of a repeat library, (2) repeat correction and classification, and (3) genome annotation. The existing computational approaches for each step were summarized and the advantages and disadvantages of the approaches were also highlighted in this review. To accurately identify, classify, and annotate the TEs in eukaryotic genomes requires combined methods. This review provides useful information for biologists who are not familiar with these approaches to find their way through the forest of programs.


Subject(s)
Computational Biology/methods , DNA Transposable Elements , Eukaryota/genetics , Genome , Repetitive Sequences, Nucleic Acid , Animals , Gene Library , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...